質問編集履歴
1
追加
title
CHANGED
File without changes
|
body
CHANGED
@@ -17,4 +17,203 @@
|
|
17
17
|
```
|
18
18
|
|
19
19
|
const int j(i & 3), k(i & ~3);
|
20
|
-
の部分の & は何をしてますか?
|
20
|
+
の部分の & は何をしてますか?
|
21
|
+
|
22
|
+
---追記---
|
23
|
+
GLFW による OpenGL 入門(130p)
|
24
|
+
http://marina.sys.wakayama-u.ac.jp/~tokoi/GLFWdraft.pdf
|
25
|
+
|
26
|
+
をやってます。実行できます
|
27
|
+
```
|
28
|
+
#pragma once
|
29
|
+
#include <algorithm>
|
30
|
+
#include <GL/glew.h>
|
31
|
+
#include <cmath>
|
32
|
+
|
33
|
+
class Matrix
|
34
|
+
{
|
35
|
+
GLfloat matrix[16];
|
36
|
+
|
37
|
+
public:
|
38
|
+
|
39
|
+
Matrix() {}
|
40
|
+
|
41
|
+
Matrix(const GLfloat *a)
|
42
|
+
{
|
43
|
+
std::copy(a, a + 16, matrix);
|
44
|
+
}
|
45
|
+
|
46
|
+
const GLfloat *data() const
|
47
|
+
{
|
48
|
+
return matrix;
|
49
|
+
}
|
50
|
+
|
51
|
+
void loadIdentity()
|
52
|
+
{
|
53
|
+
std::fill(matrix, matrix + 16, 0.0f);
|
54
|
+
matrix[0] = matrix[5] = matrix[10] = matrix[15] = 1.0f;
|
55
|
+
}
|
56
|
+
|
57
|
+
static Matrix identity()
|
58
|
+
{
|
59
|
+
Matrix t;
|
60
|
+
t.loadIdentity();
|
61
|
+
return t;
|
62
|
+
}
|
63
|
+
|
64
|
+
static Matrix translate(GLfloat x, GLfloat y, GLfloat z)
|
65
|
+
{
|
66
|
+
Matrix t;
|
67
|
+
t.loadIdentity();
|
68
|
+
t.matrix[12] = x;
|
69
|
+
t.matrix[13] = y;
|
70
|
+
t.matrix[14] = z;
|
71
|
+
|
72
|
+
return t;
|
73
|
+
}
|
74
|
+
|
75
|
+
static Matrix scale(GLfloat x, GLfloat y, GLfloat z)
|
76
|
+
{
|
77
|
+
Matrix t;
|
78
|
+
t.loadIdentity();
|
79
|
+
t.matrix[0] = x;
|
80
|
+
t.matrix[5] = y;
|
81
|
+
t.matrix[10] = z;
|
82
|
+
|
83
|
+
return t;
|
84
|
+
}
|
85
|
+
|
86
|
+
static Matrix shearXY(GLfloat angle)
|
87
|
+
{
|
88
|
+
Matrix t;
|
89
|
+
t.loadIdentity();
|
90
|
+
t.matrix[4] = angle;
|
91
|
+
|
92
|
+
return t;
|
93
|
+
}
|
94
|
+
|
95
|
+
static Matrix shearYZ(GLfloat angle)
|
96
|
+
{
|
97
|
+
Matrix t;
|
98
|
+
t.loadIdentity();
|
99
|
+
t.matrix[9] = angle;
|
100
|
+
|
101
|
+
return t;
|
102
|
+
}
|
103
|
+
|
104
|
+
static Matrix shearZX(GLfloat angle)
|
105
|
+
{
|
106
|
+
Matrix t;
|
107
|
+
t.loadIdentity();
|
108
|
+
t.matrix[2] = angle;
|
109
|
+
|
110
|
+
return t;
|
111
|
+
}
|
112
|
+
|
113
|
+
static Matrix shearYX(GLfloat angle)
|
114
|
+
{
|
115
|
+
Matrix t;
|
116
|
+
t.loadIdentity();
|
117
|
+
t.matrix[1] = angle;
|
118
|
+
|
119
|
+
return t;
|
120
|
+
}
|
121
|
+
|
122
|
+
static Matrix shearZY(GLfloat angle)
|
123
|
+
{
|
124
|
+
Matrix t;
|
125
|
+
t.loadIdentity();
|
126
|
+
t.matrix[6] = angle;
|
127
|
+
|
128
|
+
return t;
|
129
|
+
}
|
130
|
+
|
131
|
+
static Matrix shearXZ(GLfloat angle)
|
132
|
+
{
|
133
|
+
Matrix t;
|
134
|
+
t.loadIdentity();
|
135
|
+
t.matrix[8] = angle;
|
136
|
+
|
137
|
+
return t;
|
138
|
+
}
|
139
|
+
|
140
|
+
static Matrix rotationX(GLfloat angle)
|
141
|
+
{
|
142
|
+
Matrix t;
|
143
|
+
t.loadIdentity();
|
144
|
+
t.matrix[5] = cos(angle);
|
145
|
+
t.matrix[6] = sin(angle);
|
146
|
+
t.matrix[9] = -sin(angle);
|
147
|
+
t.matrix[10] = cos(angle);
|
148
|
+
|
149
|
+
return t;
|
150
|
+
}
|
151
|
+
|
152
|
+
static Matrix rotationY(GLfloat angle)
|
153
|
+
{
|
154
|
+
Matrix t;
|
155
|
+
t.loadIdentity();
|
156
|
+
t.matrix[0] = cos(angle);
|
157
|
+
t.matrix[2] = sin(angle);
|
158
|
+
t.matrix[8] = -sin(angle);
|
159
|
+
t.matrix[10] = cos(angle);
|
160
|
+
|
161
|
+
return t;
|
162
|
+
}
|
163
|
+
|
164
|
+
static Matrix rotationZ(GLfloat angle)
|
165
|
+
{
|
166
|
+
Matrix t;
|
167
|
+
t.loadIdentity();
|
168
|
+
t.matrix[0] = cos(angle);
|
169
|
+
t.matrix[1] = sin(angle);
|
170
|
+
t.matrix[4] = -sin(angle);
|
171
|
+
t.matrix[5] = cos(angle);
|
172
|
+
|
173
|
+
return t;
|
174
|
+
}
|
175
|
+
|
176
|
+
static Matrix rotate(GLfloat a, GLfloat x, GLfloat y, GLfloat z)
|
177
|
+
{
|
178
|
+
Matrix t;
|
179
|
+
const GLfloat d(sqrt(x * x + y * y + z * z));
|
180
|
+
|
181
|
+
if (d > 0.0f)
|
182
|
+
{
|
183
|
+
const GLfloat l(x / d), m(y / d), n(z / d);
|
184
|
+
const GLfloat l2(l * l), m2(m * m), n2(n * n);
|
185
|
+
const GLfloat lm(l * m), mn(m * n), nl(n * l);
|
186
|
+
const GLfloat c(cos(a)), c1(1.0f - c), s(sin(a));
|
187
|
+
|
188
|
+
t.loadIdentity();
|
189
|
+
t.matrix[0] = (1.0f - l2) * c + l2;
|
190
|
+
t.matrix[1] = lm * c1 + n * s;
|
191
|
+
t.matrix[2] = nl * c1 - m * s;
|
192
|
+
t.matrix[4] = lm * c1 - n * s;
|
193
|
+
t.matrix[5] = (1.0f - m2) * c + m2;
|
194
|
+
t.matrix[6] = mn * c1 + l * s;
|
195
|
+
t.matrix[8] = nl * c1 + m * s;
|
196
|
+
t.matrix[9] = mn * c1 - l * s;
|
197
|
+
t.matrix[10] = (1.0f - n2) * c + n2;
|
198
|
+
}
|
199
|
+
return t;
|
200
|
+
}
|
201
|
+
|
202
|
+
Matrix operator*(const Matrix &m) const
|
203
|
+
{
|
204
|
+
Matrix t;
|
205
|
+
|
206
|
+
for (int i = 0; i < 16; ++i)
|
207
|
+
{
|
208
|
+
const int j(i & 3), k(i & ~3);
|
209
|
+
|
210
|
+
t.matrix[i] =
|
211
|
+
matrix[0 + j] * matrix[k + 0] +
|
212
|
+
matrix[4 + j] * matrix[k + 1] +
|
213
|
+
matrix[8 + j] * matrix[k + 2] +
|
214
|
+
matrix[12+j] * matrix[k + 3];
|
215
|
+
}
|
216
|
+
return t;
|
217
|
+
}
|
218
|
+
};
|
219
|
+
```
|