質問編集履歴
2
_
title
CHANGED
File without changes
|
body
CHANGED
@@ -1,7 +1,4 @@
|
|
1
|
-
皆様の助けもあり画像から複数輪郭抽出を行うまでになりました.(図1)
|
2
|
-
|
1
|
+
皆様の助けもあり画像から複数輪郭抽出を行うまでになりました.白の領域においてドロネー分割をおこないたいのですが,
|
3
|
-
どうしても図のように黒の領域にも分割が及んでいます.
|
4
|
-

|
5
2
|
どなたか解決できる方いらっしゃいましたら.よろしくお願いします.
|
6
3
|
python2.7,openCV4.0です.
|
7
4
|
|
1
プログラムを載せました.まだ頂いた輪郭抽出のものを載せていません.
title
CHANGED
File without changes
|
body
CHANGED
@@ -3,4 +3,142 @@
|
|
3
3
|
どうしても図のように黒の領域にも分割が及んでいます.
|
4
4
|

|
5
5
|
どなたか解決できる方いらっしゃいましたら.よろしくお願いします.
|
6
|
-
python2.7,openCV4.0です.
|
6
|
+
python2.7,openCV4.0です.
|
7
|
+
|
8
|
+
```python
|
9
|
+
|
10
|
+
#!/usr/bin/env python
|
11
|
+
#coding: utf-8
|
12
|
+
|
13
|
+
import csv,os,cv2,math,re
|
14
|
+
import numpy as np
|
15
|
+
import matplotlib.pyplot as plt
|
16
|
+
from matplotlib import pyplot
|
17
|
+
from operator import itemgetter
|
18
|
+
from dolfin import *
|
19
|
+
from mshr import *
|
20
|
+
from pylab import show,triplot
|
21
|
+
|
22
|
+
#読み込み,グレー設定
|
23
|
+
img = cv2.imread('/home/ubuntu/0116maps/map.pgm')
|
24
|
+
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
25
|
+
|
26
|
+
#smoothing
|
27
|
+
img_preprocessed = cv2.GaussianBlur(img_gray, (5, 5), 50)
|
28
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
29
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
30
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
31
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
32
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
33
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
34
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
35
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
36
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
37
|
+
img_preprocessed = cv2.GaussianBlur(img_preprocessed, (5, 5), 50)
|
38
|
+
|
39
|
+
#閾値処理,輪郭検索
|
40
|
+
_, white_binary = cv2.threshold(img_preprocessed, 220, 254, cv2.THRESH_BINARY)
|
41
|
+
white_contours, _ = cv2.findContours(white_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
42
|
+
|
43
|
+
#imageのコピー
|
44
|
+
white_and_contours = np.copy(img)
|
45
|
+
|
46
|
+
#最大輪郭値取得
|
47
|
+
min_white_area = 60
|
48
|
+
large_contours = [ cnt for cnt in white_contours if cv2.contourArea(cnt) > min_white_area ]
|
49
|
+
|
50
|
+
#外形の座標取得,最大値最小値取得
|
51
|
+
large_contours = np.array(large_contours)
|
52
|
+
large_contours_min = large_contours.min(axis = 1)
|
53
|
+
large_contours_max = large_contours.max(axis = 1)
|
54
|
+
|
55
|
+
#csv削除,書き込み
|
56
|
+
os.remove("/home/ubuntu/map_data/pixel_output.csv")
|
57
|
+
with open("/home/ubuntu/map_data/pixel_output.csv", 'a') as f:
|
58
|
+
writer = csv.writer(f)
|
59
|
+
writer.writerows(large_contours)
|
60
|
+
|
61
|
+
#pixel値の[]削除、,付け
|
62
|
+
os.remove("/home/ubuntu/map_data/pixel_surround.csv")
|
63
|
+
with open("/home/ubuntu/map_data/pixel_output.csv", 'rb') as f:
|
64
|
+
reader = csv.reader(f)
|
65
|
+
for row in reader:
|
66
|
+
i = ' '.join(row)
|
67
|
+
i = i.replace(' ',',')
|
68
|
+
i = i.replace('],[','')
|
69
|
+
i = i.replace('[','')
|
70
|
+
i = i.replace(']','\n')
|
71
|
+
f = open("/home/ubuntu/map_data/pixel_surround.csv", 'a')
|
72
|
+
f.write(i)
|
73
|
+
f.close()
|
74
|
+
|
75
|
+
os.remove("/home/ubuntu/map_data/minmaxoutput.csv")
|
76
|
+
with open("/home/ubuntu/map_data/minmaxoutput.csv", 'a') as f:
|
77
|
+
writer = csv.writer(f)
|
78
|
+
writer.writerows(large_contours_min)
|
79
|
+
writer.writerows(large_contours_max)
|
80
|
+
|
81
|
+
os.remove("/home/ubuntu/map_data/minmax_coordinate.csv")
|
82
|
+
with open("/home/ubuntu/map_data/minmaxoutput.csv", 'rb') as f:
|
83
|
+
reader = csv.reader(f)
|
84
|
+
for row in reader:
|
85
|
+
i = ' '.join(row)
|
86
|
+
i = i.replace('[','')
|
87
|
+
i = i.replace(']',',')
|
88
|
+
i = i.replace(' ',',')
|
89
|
+
f = open("/home/ubuntu/map_data/minmax_coordinate.csv", 'a')
|
90
|
+
f.write(i)
|
91
|
+
f.close()
|
92
|
+
|
93
|
+
#map値読み取りやすく変換
|
94
|
+
os.remove("/home/ubuntu/map_data/map_value.csv")
|
95
|
+
with open("/home/ubuntu/0116maps/map.yaml", 'rb') as f:
|
96
|
+
reader = csv.reader(f)
|
97
|
+
for words in reader:
|
98
|
+
i = ' '.join(words)
|
99
|
+
match = re.search(r': ', i)
|
100
|
+
if match:
|
101
|
+
i = i[match.end():]
|
102
|
+
i = i.strip('[]')
|
103
|
+
i = i.replace(' ',',')
|
104
|
+
f = open("/home/ubuntu/map_data/map_value.csv", 'a')
|
105
|
+
f.write(i + ",")
|
106
|
+
f.close()
|
107
|
+
|
108
|
+
#格子分割準備
|
109
|
+
with open("/home/ubuntu/map_data/pixel_surround.csv", 'rb') as f:
|
110
|
+
reader = csv.reader(f)
|
111
|
+
count = 0
|
112
|
+
for pixel in reader:
|
113
|
+
count+=1
|
114
|
+
|
115
|
+
j = count-1
|
116
|
+
k = 0
|
117
|
+
poin = range(j)
|
118
|
+
domain_vertices = []
|
119
|
+
|
120
|
+
with open("/home/ubuntu/map_data/pixel_surround.csv", 'rb') as f:
|
121
|
+
reader = csv.reader(f)
|
122
|
+
for pix in reader:
|
123
|
+
if k<j:
|
124
|
+
poin[k] = [Point(int(pix[0]),int(pix[1]))]
|
125
|
+
k+=1
|
126
|
+
|
127
|
+
for m in reversed(range(j)):
|
128
|
+
domain_vertices += poin[m]
|
129
|
+
|
130
|
+
#格子分割
|
131
|
+
domain = Polygon(domain_vertices)
|
132
|
+
mesh = generate_mesh(domain,0.1)
|
133
|
+
coords = mesh.coordinates()
|
134
|
+
|
135
|
+
os.remove("/home/ubuntu/map_data/coords.csv")
|
136
|
+
with open("/home/ubuntu/map_data/coords.csv", 'a') as f:
|
137
|
+
writer = csv.writer(f)
|
138
|
+
writer.writerows(coords)
|
139
|
+
i
|
140
|
+
#メッシュ領域plot
|
141
|
+
triplot(coords[:,0], coords[:,1], triangles=mesh.cells())
|
142
|
+
plt.imshow(white_and_contours)
|
143
|
+
plt.show()
|
144
|
+
```
|