質問編集履歴
1
モデルについてのコードを追加
title
CHANGED
File without changes
|
body
CHANGED
@@ -32,7 +32,87 @@
|
|
32
32
|
for result in results:
|
33
33
|
print(result)
|
34
34
|
|
35
|
+
```
|
35
36
|
|
37
|
+
```Python
|
38
|
+
#coding:utf-8
|
39
|
+
|
40
|
+
import keras
|
41
|
+
from keras.utils import np_utils
|
42
|
+
from keras.models import Sequential
|
43
|
+
from keras.layers.convolutional import Conv2D, MaxPooling2D
|
44
|
+
from keras.layers.core import Dense, Dropout, Activation, Flatten
|
45
|
+
import numpy as np
|
46
|
+
from sklearn.model_selection import train_test_split
|
47
|
+
from PIL import Image
|
48
|
+
import glob
|
49
|
+
folder = ["Not_Skill","with_Skill"]
|
50
|
+
image_size = 50
|
51
|
+
|
52
|
+
X = []
|
53
|
+
Y = []
|
54
|
+
for index, name in enumerate(folder):
|
55
|
+
dir = "./" + name
|
56
|
+
files = glob.glob(dir + "/*.jpg")
|
57
|
+
for i, file in enumerate(files):
|
58
|
+
image = Image.open(file)
|
59
|
+
image = image.convert("RGB")
|
60
|
+
image = image.resize((image_size, image_size))
|
61
|
+
data = np.asarray(image)
|
62
|
+
X.append(data)
|
63
|
+
Y.append(index)
|
64
|
+
|
65
|
+
X = np.array(X)
|
66
|
+
Y = np.array(Y)
|
67
|
+
X = X.astype('float32')
|
68
|
+
X = X / 255.0
|
69
|
+
Y = np_utils.to_categorical(Y, 4)
|
70
|
+
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.20)
|
71
|
+
model = Sequential()
|
72
|
+
|
73
|
+
model.add(Conv2D(32, (3, 3), padding='same',input_shape=X_train.shape[1:]))
|
74
|
+
model.add(Activation('relu'))
|
75
|
+
model.add(Conv2D(32, (3, 3)))
|
76
|
+
model.add(Activation('relu'))
|
77
|
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
78
|
+
model.add(Dropout(0.25))
|
79
|
+
|
80
|
+
model.add(Conv2D(64, (3, 3), padding='same'))
|
81
|
+
model.add(Activation('relu'))
|
82
|
+
model.add(Conv2D(64, (3, 3)))
|
83
|
+
model.add(Activation('relu'))
|
84
|
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
85
|
+
model.add(Dropout(0.25))
|
86
|
+
|
87
|
+
model.add(Flatten())
|
88
|
+
model.add(Dense(512))
|
89
|
+
model.add(Activation('relu'))
|
90
|
+
model.add(Dropout(0.5))
|
91
|
+
model.add(Dense(4))
|
92
|
+
model.add(Activation('softmax'))
|
93
|
+
|
94
|
+
# コンパイル
|
95
|
+
model.compile(loss='categorical_crossentropy',optimizer='SGD',metrics=['accuracy'])
|
96
|
+
|
97
|
+
from keras.callbacks import TensorBoard
|
98
|
+
tbcb = TensorBoard(log_dir='./graph',histogram_freq=0,write_graph=True)
|
99
|
+
|
100
|
+
history = model.fit(X_train, y_train,batch_size=32,epochs=1000, verbose=1,validation_data=(X_test,y_test),callbacks=[tbcb])
|
101
|
+
|
102
|
+
from keras.utils import plot_model
|
103
|
+
model_json = model.to_json()
|
104
|
+
with open('model.json', mode='w') as f:
|
105
|
+
f.write(model_json)
|
106
|
+
|
107
|
+
model.save_weights('weights.h5')
|
108
|
+
|
109
|
+
import pickle
|
110
|
+
with open("history.pickle", mode='wb') as f:
|
111
|
+
pickle.dump(history.history, f)
|
112
|
+
print(model.evaluate(X_test, y_test))
|
113
|
+
|
114
|
+
```
|
115
|
+
|
36
116
|
### 試したこと
|
37
117
|
|
38
118
|
target_sizeを(50,50)にした
|