質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Google Colaboratory

Google Colaboratoryとは、無償のJupyterノートブック環境。教育や研究機関の機械学習の普及のためのGoogleの研究プロジェクトです。PythonやNumpyといった機械学習で要する大方の環境がすでに構築されており、コードの記述・実行、解析の保存・共有などが可能です。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

解決済

Google colabでCNNモデル作成時のtensorFlow,kerasバージョン変更の際のエラー

legend_hero
legend_hero

総合スコア3

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Google Colaboratory

Google Colaboratoryとは、無償のJupyterノートブック環境。教育や研究機関の機械学習の普及のためのGoogleの研究プロジェクトです。PythonやNumpyといった機械学習で要する大方の環境がすでに構築されており、コードの記述・実行、解析の保存・共有などが可能です。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

1回答

0評価

0クリップ

487閲覧

投稿2022/01/27 22:45

編集2022/02/01 17:33

google colabでCNNモデルを作成しようとしているのですがモデルのバージョンを指定せずに(keras2.7.0 tensorflow2.7.0)実行するとエラーを出さずにモデルを作成できるのですが,実装上の関係でkerasは2.24でtensorflowは1.14.0でモデルを作成したいため,それぞれそのバージョンをインストールし,実行すると画像のようなエラーをはいてしまいます.
エラーから何を変更すればいいのかわからず困っています.
ValueError: Could not interpret optimizer identifier: <tensorflow.python.keras.optimizer_v2.rmsprop.RMSprop object at 0x7fe75d6b5210>
イメージ説明
また,
!pip install keras==2.2.4
!pip install tensorflow==1.14.0
をインストールする際に下図のエラーが発生していました...
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
tensorflow 2.7.0 requires keras<2.8,>=2.7.0rc0, but you have keras 2.2.4 which is incompatible.
イメージ説明
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
kapre 0.3.7 requires tensorflow>=2.0.0, but you have tensorflow 1.14.0 which is incompatible.
イメージ説明

main

!pip install icrawler from icrawler.builtin import BingImageCrawler # 猫の画像を10枚取得 crawler = BingImageCrawler(storage={"root_dir": "cat"}) crawler.crawl(keyword="猫", max_num=10) from icrawler.builtin import BingImageCrawler # 犬の画像を10枚取得 crawler = BingImageCrawler(storage={"root_dir": "dog"}) crawler.crawl(keyword="犬", max_num=10) from PIL import Image import os, glob import numpy as np from PIL import ImageFile # IOError: image file is truncated (0 bytes not processed)回避のため ImageFile.LOAD_TRUNCATED_IMAGES = True classes = ["dog", "cat"] num_classes = len(classes) image_size = 64 num_testdata = 5 X_train = [] X_test = [] y_train = [] y_test = [] for index, classlabel in enumerate(classes): photos_dir = "./" + classlabel files = glob.glob(photos_dir + "/*.jpg") for i, file in enumerate(files): image = Image.open(file) image = image.convert("RGB") image = image.resize((image_size, image_size)) data = np.asarray(image) if i < num_testdata: X_test.append(data) y_test.append(index) else: # angleに代入される値 # -20 # -15 # -10 # -5 # 0 # 5 # 10 # 15 for angle in range(-20, 20, 5): img_r = image.rotate(angle) data = np.asarray(img_r) X_train.append(data) y_train.append(index) # FLIP_LEFT_RIGHT は 左右反転 img_trains = img_r.transpose(Image.FLIP_LEFT_RIGHT) data = np.asarray(img_trains) X_train.append(data) y_train.append(index) X_train = np.array(X_train) X_test = np.array(X_test) y_train = np.array(y_train) y_test = np.array(y_test) xy = (X_train, X_test, y_train, y_test) np.save("./dog_cat.npy", xy) from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.utils import np_utils from tensorflow import keras import numpy as np classes = ["dog", "cat"] num_classes = len(classes) image_size = 64 """ データを読み込む関数 """ def load_data(): X_train, X_test, y_train, y_test = np.load("./dog_cat.npy", allow_pickle=True) # 入力データの各画素値を0-1の範囲で正規化(学習コストを下げるため) X_train = X_train.astype("float") / 255 X_test = X_test.astype("float") / 255 # to_categorical()にてラベルをone hot vector化 y_train = np_utils.to_categorical(y_train, num_classes) y_test = np_utils.to_categorical(y_test, num_classes) return X_train, y_train, X_test, y_test """ モデルを学習する関数 """ def train(X, y, X_test, y_test): model = Sequential() # Xは(1200, 64, 64, 3) # X.shape[1:]とすることで、(64, 64, 3)となり、入力にすることが可能です。 model.add(Conv2D(32,(3,3), padding='same',input_shape=X.shape[1:])) model.add(Activation('relu')) model.add(Conv2D(32,(3,3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.1)) model.add(Conv2D(64,(3,3), padding='same')) model.add(Activation('relu')) model.add(Conv2D(64,(3,3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.45)) model.add(Dense(2)) model.add(Activation('softmax')) # https://keras.io/ja/optimizers/ # 今回は、最適化アルゴリズムにRMSpropを利用 opt = keras.optimizers.RMSprop(lr=0.00005, decay=1e-6) # https://keras.io/ja/models/sequential/ model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy']) model.fit(X, y, batch_size=28, epochs=40) # HDF5ファイルにKerasのモデルを保存 model.save('./cnn.h5') return model """ メイン関数 データの読み込みとモデルの学習を行います。 """ def main(): # データの読み込み X_train, y_train, X_test, y_test = load_data() # モデルの学習 model = train(X_train, y_train, X_test, y_test) main() main()

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Google Colaboratory

Google Colaboratoryとは、無償のJupyterノートブック環境。教育や研究機関の機械学習の普及のためのGoogleの研究プロジェクトです。PythonやNumpyといった機械学習で要する大方の環境がすでに構築されており、コードの記述・実行、解析の保存・共有などが可能です。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。