質問編集履歴
2
実行できているソースなどをすべて記載。
test
CHANGED
File without changes
|
test
CHANGED
@@ -28,6 +28,314 @@
|
|
28
28
|
|
29
29
|
```python
|
30
30
|
|
31
|
+
#ラベリングによる学習/検証データの準備
|
32
|
+
|
33
|
+
|
34
|
+
|
35
|
+
#import os
|
36
|
+
|
37
|
+
#os.environ['KERAS_BACKEND']='tensorflow'
|
38
|
+
|
39
|
+
#
|
40
|
+
|
41
|
+
|
42
|
+
|
43
|
+
from PIL import Image
|
44
|
+
|
45
|
+
import os, glob
|
46
|
+
|
47
|
+
import numpy as np
|
48
|
+
|
49
|
+
import random, math
|
50
|
+
|
51
|
+
|
52
|
+
|
53
|
+
|
54
|
+
|
55
|
+
|
56
|
+
|
57
|
+
#画像が保存されているルートディレクトリのパス
|
58
|
+
|
59
|
+
root_dir = "C:/animal_pic"
|
60
|
+
|
61
|
+
# 商品名
|
62
|
+
|
63
|
+
categories = ["pos",
|
64
|
+
|
65
|
+
"neg"]
|
66
|
+
|
67
|
+
|
68
|
+
|
69
|
+
# 画像データ用配列
|
70
|
+
|
71
|
+
X = []
|
72
|
+
|
73
|
+
# ラベルデータ用配列
|
74
|
+
|
75
|
+
Y = []
|
76
|
+
|
77
|
+
|
78
|
+
|
79
|
+
#画像データごとにadd_sample()を呼び出し、X,Yの配列を返す関数
|
80
|
+
|
81
|
+
def make_sample(files):
|
82
|
+
|
83
|
+
global X, Y
|
84
|
+
|
85
|
+
X = []
|
86
|
+
|
87
|
+
Y = []
|
88
|
+
|
89
|
+
for cat, fname in files:
|
90
|
+
|
91
|
+
add_sample(cat, fname)
|
92
|
+
|
93
|
+
return np.array(X), np.array(Y)
|
94
|
+
|
95
|
+
|
96
|
+
|
97
|
+
#渡された画像データを読み込んでXに格納し、また、
|
98
|
+
|
99
|
+
#画像データに対応するcategoriesのidxをY格納する関数
|
100
|
+
|
101
|
+
def add_sample(cat, fname):
|
102
|
+
|
103
|
+
img = Image.open(fname)
|
104
|
+
|
105
|
+
img = img.convert("RGB")
|
106
|
+
|
107
|
+
#img = img.resize((150, 150))
|
108
|
+
|
109
|
+
data = np.asarray(img)
|
110
|
+
|
111
|
+
X.append(data)
|
112
|
+
|
113
|
+
Y.append(cat)
|
114
|
+
|
115
|
+
|
116
|
+
|
117
|
+
#全データ格納用配列
|
118
|
+
|
119
|
+
allfiles = []
|
120
|
+
|
121
|
+
|
122
|
+
|
123
|
+
#カテゴリ配列の各値と、それに対応するidxを認識し、全データをallfilesにまとめる
|
124
|
+
|
125
|
+
for idx, cat in enumerate(categories):
|
126
|
+
|
127
|
+
image_dir = root_dir + "/" + cat
|
128
|
+
|
129
|
+
files = glob.glob(image_dir + "/*.tif")
|
130
|
+
|
131
|
+
for f in files:
|
132
|
+
|
133
|
+
allfiles.append((idx, f))
|
134
|
+
|
135
|
+
|
136
|
+
|
137
|
+
#シャッフル後、学習データと検証データに分ける
|
138
|
+
|
139
|
+
random.shuffle(allfiles)
|
140
|
+
|
141
|
+
th = math.floor(len(allfiles) * 0.8)
|
142
|
+
|
143
|
+
train = allfiles[0:th]
|
144
|
+
|
145
|
+
test = allfiles[th:]
|
146
|
+
|
147
|
+
X_train, y_train = make_sample(train)
|
148
|
+
|
149
|
+
X_test, y_test = make_sample(test)
|
150
|
+
|
151
|
+
xy = (X_train, X_test, y_train, y_test)
|
152
|
+
|
153
|
+
#データを保存する
|
154
|
+
|
155
|
+
np.save("animal_data.npy", xy)
|
156
|
+
|
157
|
+
```
|
158
|
+
|
159
|
+
###実行結果
|
160
|
+
|
161
|
+
表示なし
|
162
|
+
|
163
|
+
###
|
164
|
+
|
165
|
+
|
166
|
+
|
167
|
+
```python
|
168
|
+
|
169
|
+
#モデルの構築
|
170
|
+
|
171
|
+
|
172
|
+
|
173
|
+
from keras import layers, models
|
174
|
+
|
175
|
+
|
176
|
+
|
177
|
+
model = models.Sequential()
|
178
|
+
|
179
|
+
model.add(layers.Conv2D(32,(3,3),activation="relu",input_shape=(150,150,3)))
|
180
|
+
|
181
|
+
model.add(layers.MaxPooling2D((2,2)))
|
182
|
+
|
183
|
+
model.add(layers.Conv2D(64,(3,3),activation="relu"))
|
184
|
+
|
185
|
+
model.add(layers.MaxPooling2D((2,2)))
|
186
|
+
|
187
|
+
model.add(layers.Conv2D(128,(3,3),activation="relu"))
|
188
|
+
|
189
|
+
model.add(layers.MaxPooling2D((2,2)))
|
190
|
+
|
191
|
+
model.add(layers.Conv2D(128,(3,3),activation="relu"))
|
192
|
+
|
193
|
+
model.add(layers.MaxPooling2D((2,2)))
|
194
|
+
|
195
|
+
model.add(layers.Flatten())
|
196
|
+
|
197
|
+
model.add(layers.Dense(512,activation="relu"))
|
198
|
+
|
199
|
+
model.add(layers.Dense(2,activation="sigmoid")) #分類先の種類分設定
|
200
|
+
|
201
|
+
|
202
|
+
|
203
|
+
#モデル構成の確認
|
204
|
+
|
205
|
+
model.summary()
|
206
|
+
|
207
|
+
```
|
208
|
+
|
209
|
+
### 実行結果
|
210
|
+
|
211
|
+
_________________________________________________________________
|
212
|
+
|
213
|
+
Layer (type) Output Shape Param #
|
214
|
+
|
215
|
+
=================================================================
|
216
|
+
|
217
|
+
conv2d_5 (Conv2D) (None, 148, 148, 32) 896
|
218
|
+
|
219
|
+
_________________________________________________________________
|
220
|
+
|
221
|
+
max_pooling2d_5 (MaxPooling2 (None, 74, 74, 32) 0
|
222
|
+
|
223
|
+
_________________________________________________________________
|
224
|
+
|
225
|
+
conv2d_6 (Conv2D) (None, 72, 72, 64) 18496
|
226
|
+
|
227
|
+
_________________________________________________________________
|
228
|
+
|
229
|
+
max_pooling2d_6 (MaxPooling2 (None, 36, 36, 64) 0
|
230
|
+
|
231
|
+
_________________________________________________________________
|
232
|
+
|
233
|
+
conv2d_7 (Conv2D) (None, 34, 34, 128) 73856
|
234
|
+
|
235
|
+
_________________________________________________________________
|
236
|
+
|
237
|
+
max_pooling2d_7 (MaxPooling2 (None, 17, 17, 128) 0
|
238
|
+
|
239
|
+
_________________________________________________________________
|
240
|
+
|
241
|
+
conv2d_8 (Conv2D) (None, 15, 15, 128) 147584
|
242
|
+
|
243
|
+
_________________________________________________________________
|
244
|
+
|
245
|
+
max_pooling2d_8 (MaxPooling2 (None, 7, 7, 128) 0
|
246
|
+
|
247
|
+
_________________________________________________________________
|
248
|
+
|
249
|
+
flatten_2 (Flatten) (None, 6272) 0
|
250
|
+
|
251
|
+
_________________________________________________________________
|
252
|
+
|
253
|
+
dense_3 (Dense) (None, 512) 3211776
|
254
|
+
|
255
|
+
_________________________________________________________________
|
256
|
+
|
257
|
+
dense_4 (Dense) (None, 2) 1026
|
258
|
+
|
259
|
+
=================================================================
|
260
|
+
|
261
|
+
Total params: 3,453,634
|
262
|
+
|
263
|
+
Trainable params: 3,453,634
|
264
|
+
|
265
|
+
Non-trainable params: 0
|
266
|
+
|
267
|
+
###
|
268
|
+
|
269
|
+
|
270
|
+
|
271
|
+
```python
|
272
|
+
|
273
|
+
#モデルのコンパイル
|
274
|
+
|
275
|
+
|
276
|
+
|
277
|
+
from keras import optimizers
|
278
|
+
|
279
|
+
|
280
|
+
|
281
|
+
model.compile(loss="binary_crossentropy",
|
282
|
+
|
283
|
+
optimizer=optimizers.RMSprop(lr=1e-4),
|
284
|
+
|
285
|
+
metrics=["acc"])
|
286
|
+
|
287
|
+
```
|
288
|
+
|
289
|
+
###実行結果
|
290
|
+
|
291
|
+
表示なし
|
292
|
+
|
293
|
+
###
|
294
|
+
|
295
|
+
```python
|
296
|
+
|
297
|
+
#データの準備
|
298
|
+
|
299
|
+
from keras.utils import np_utils
|
300
|
+
|
301
|
+
import numpy as np
|
302
|
+
|
303
|
+
|
304
|
+
|
305
|
+
categories = ["pos","neg"]
|
306
|
+
|
307
|
+
nb_classes = len(categories)
|
308
|
+
|
309
|
+
|
310
|
+
|
311
|
+
X_train, X_test, y_train, y_test = np.load("/animal_data.npy")
|
312
|
+
|
313
|
+
|
314
|
+
|
315
|
+
#データの正規化
|
316
|
+
|
317
|
+
X_train = X_train.astype("float") / 255
|
318
|
+
|
319
|
+
X_test = X_test.astype("float") / 255
|
320
|
+
|
321
|
+
|
322
|
+
|
323
|
+
#kerasで扱えるようにcategoriesをベクトルに変換
|
324
|
+
|
325
|
+
y_train = np_utils.to_categorical(y_train, nb_classes)
|
326
|
+
|
327
|
+
y_test = np_utils.to_categorical(y_test, nb_classes)
|
328
|
+
|
329
|
+
```
|
330
|
+
|
331
|
+
###実行結果
|
332
|
+
|
333
|
+
表示なし
|
334
|
+
|
335
|
+
###
|
336
|
+
|
337
|
+
```python
|
338
|
+
|
31
339
|
#モデルの学習
|
32
340
|
|
33
341
|
|
@@ -44,6 +352,68 @@
|
|
44
352
|
|
45
353
|
```
|
46
354
|
|
355
|
+
実行結果 ここでエラーがでてます。
|
356
|
+
|
357
|
+
---------------------------------------------------------------------------
|
358
|
+
|
359
|
+
ValueError Traceback (most recent call last)
|
360
|
+
|
361
|
+
<ipython-input-5-a383b561d91a> in <module>
|
362
|
+
|
363
|
+
4 epochs=10,
|
364
|
+
|
365
|
+
5 batch_size=6,
|
366
|
+
|
367
|
+
----> 6 validation_data=(X_test,y_test))
|
368
|
+
|
369
|
+
|
370
|
+
|
371
|
+
C:\ProgramData\Anaconda3\envs\PythonAI\lib\site-packages\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
|
372
|
+
|
373
|
+
950 sample_weight=sample_weight,
|
374
|
+
|
375
|
+
951 class_weight=class_weight,
|
376
|
+
|
377
|
+
--> 952 batch_size=batch_size)
|
378
|
+
|
379
|
+
953 # Prepare validation data.
|
380
|
+
|
381
|
+
954 do_validation = False
|
382
|
+
|
383
|
+
|
384
|
+
|
385
|
+
C:\ProgramData\Anaconda3\envs\PythonAI\lib\site-packages\keras\engine\training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
|
386
|
+
|
387
|
+
749 feed_input_shapes,
|
388
|
+
|
389
|
+
750 check_batch_axis=False, # Don't enforce the batch size.
|
390
|
+
|
391
|
+
--> 751 exception_prefix='input')
|
392
|
+
|
393
|
+
752
|
394
|
+
|
395
|
+
753 if y is not None:
|
396
|
+
|
397
|
+
|
398
|
+
|
399
|
+
C:\ProgramData\Anaconda3\envs\PythonAI\lib\site-packages\keras\engine\training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
|
400
|
+
|
401
|
+
126 ': expected ' + names[i] + ' to have ' +
|
402
|
+
|
403
|
+
127 str(len(shape)) + ' dimensions, but got array '
|
404
|
+
|
405
|
+
--> 128 'with shape ' + str(data_shape))
|
406
|
+
|
407
|
+
129 if not check_batch_axis:
|
408
|
+
|
409
|
+
130 data_shape = data_shape[1:]
|
410
|
+
|
411
|
+
|
412
|
+
|
413
|
+
ValueError: Error when checking input: expected conv2d_1_input to have 4 dimensions, but got array with shape (0, 1)
|
414
|
+
|
415
|
+
|
416
|
+
|
47
417
|
|
48
418
|
|
49
419
|
### 試したこと
|
@@ -71,3 +441,7 @@
|
|
71
441
|
まだこれらの分野を勉強し始めたばかりで原因も対処法もよくわからないことだらけなので、回答をいただけたらすぐに試したいと思います。
|
72
442
|
|
73
443
|
よろしくお願いします。
|
444
|
+
|
445
|
+
|
446
|
+
|
447
|
+
実行できているソースなどをすべて記載しました。
|
1
タグの追加
test
CHANGED
File without changes
|
test
CHANGED
File without changes
|