質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
NumPy

NumPyはPythonのプログラミング言語の科学的と数学的なコンピューティングに関する拡張モジュールです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

SVMで間違ったファイルを検出したい

退会済みユーザー

退会済みユーザー

総合スコア0

NumPy

NumPyはPythonのプログラミング言語の科学的と数学的なコンピューティングに関する拡張モジュールです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

2回答

0評価

0クリップ

382閲覧

投稿2017/11/06 13:08

SVMで間違ったファイルを検出したいです。現在、犬の鳴き声と猫の鳴き声を分類するシステムを作っています。

# coding:utf-8 from sklearn import svm, cross_validation from sklearn.metrics import classification_report, accuracy_score import sys from mfcc import * import glob import csv import random import numpy as np import os from sklearn.model_selection import train_test_split if __name__ == "__main__": train_label = np.array([]) test_label = np.array([]) nfft = 2048 # FFTのサンプル数 nceps = 12 # MFCCの次元数 train_data = np.empty((0, 12), float) test_data = np.empty((0, 12), float) basedir = '/sound_animal/sounds' files = glob.glob(os.path.join(basedir, '*.wav')) for file_name in files: feature = get_feature(file_name, nfft, nceps) if len(train_data) == 0: train_data = feature else: train_data = np.vstack((train_data, feature)) train_label = np.append(train_label,file_name) feature = get_feature(file_name, nfft, nceps) if len(test_data) == 0: test_data = feature else: test_data = np.vstack((test_data, feature)) test_label = np.append(test_label,file_name) feature_train_data = np.hstack((train_label.reshape(len(train_label), 1), train_data)) feature_test_data = np.hstack((test_label.reshape(len(test_label), 1), test_data)) with open("feature_data/train_data.txt", "w") as f: writer = csv.writer(f) writer.writerows(feature_train_data) with open("feature_data/test_data.txt", "w") as f: writer = csv.writer(f) writer.writerows(feature_train_data) clf = svm.SVC(kernel='linear', C=1).fit(train_data, train_label) score = clf.score(test_data, test_label) print(score)

と書きました。現在スコアは0.988です。しかし、今/sound_animal/soundsの中には犬の鳴き声のデータしかなく本来スコアは1.0になるはずです。間違っているファイルがどのファイルかみたいのですが、どのようにコードを書いたらどのファイルが間違っているのか確認できるでしょうか?それとも

score = clf.score(test_data, test_label)

といっぺんに計算しているからどのファイルが間違っているのか確認はできず、とても面倒ですが一つ一つファイルを減らすなどしてどのファイルが間違いなのか確認するしかないのでしょうか?

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

NumPy

NumPyはPythonのプログラミング言語の科学的と数学的なコンピューティングに関する拡張モジュールです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。