質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

89.05%

keras:MNISTの畳み込みニューラルネットワークでエラーが出ます..

解決済

回答 2

投稿

  • 評価
  • クリップ 0
  • VIEW 430

python_2019

score 66

見よう見まねで、CNNのコードを書いて実行しました。
エラーが発生しまして、エラー内容を読んでも、どうも理解できません。

どなたか、お詳しい方、ご指導お願いいたします。

from keras.models import Sequential
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.optimizers import Adadelta
from keras.callbacks import EarlyStopping

import keras
from keras.datasets import mnist
from keras.optimizers import RMSprop

# MNISTデータを読込む
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# MNISTデータを加工する
x_train  = x_train.reshape(60000, 784)
x_test   = x_test.reshape(10000, 784)
x_train  = x_train.astype('float32')
x_test   = x_test.astype('float32')
x_train /= 255
x_test  /= 255
y_train  = keras.utils.to_categorical(y_train, 10)
y_test   = keras.utils.to_categorical(y_test, 10)


# 各層のパラメータ
nb_filters = 10           # 畳み込みフィルタ数
nb_conv = 3              # 畳み込みフィルタの縦横pixel数
nb_pool = 2               # プーリングを行う範囲の縦横pixel数  
nb_classes = 10        # 分類するクラス数
nb_epoch = 50          # 最適化計算のループ回数

# 特徴量抽出

model = Sequential()
model.add(Convolution2D(nb_filters, nb_conv, nb_conv))  # 畳み込みフィルタ層
model.add(Activation("relu"))     # 最適化関数
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))  # プーリング層
model.add(Dropout(0.2))     # ドロップアウト層

# 特徴量に基づいた分類
model.add(Flatten())     # 全結合層入力のためのデータの一次元化(図1では省略している)
model.add(Dense(128))     # 全結合層
model.add(Activation("relu"))     # 最適化関数
model.add(Dropout(0.2))     # ドロップアウト層
model.add(Dense(nb_classes))     # 出力層(全結合層:ノードの数は分類クラス数)
model.add(Activation("softmax"))     # 出力層

#モデルのコンパイル
model.compile(loss="categorical_crossentropy", optimizer="adadelta", metrics=["accuracy"])

# モデルの学習
early_stopping = EarlyStopping(patience=2, verbose=1)

model.fit(x_train, y_train, nb_epoch=nb_epoch, batch_size=128, verbose=1, validation_split=0.2, callbacks=[early_stopping])

# patientce:何回連続で損失の最小値が更新されなかったらループを止めるか
# verbose:コマンドラインにコメントを出力する場合は"1"と設定
# batch_size:計算効率化のために分割された訓練データの1グループあたりのデータ数
# validation_split:全ての画像の内、評価画像として用いる割合(0.2なら最後の20%)

# モデルの評価
classes = model.predict(x_test, batch_size=128, verbose=True)
print(classes[0])
C:\python\anaconda\pgm\lib\site-packages\ipykernel_launcher.py:35: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(10, (3, 3))`
C:\python\anaconda\pgm\lib\site-packages\ipykernel_launcher.py:54: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-180-ade778f5d9df> in <module>
     52 early_stopping = EarlyStopping(patience=2, verbose=1)
     53 
---> 54 model.fit(x_train, y_train, nb_epoch=nb_epoch, batch_size=128, verbose=1, validation_split=0.2, callbacks=[early_stopping])
     55 
     56 # patientce:何回連続で損失の最小値が更新されなかったらループを止めるか

C:\python\anaconda\pgm\lib\site-packages\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
    950             sample_weight=sample_weight,
    951             class_weight=class_weight,
--> 952             batch_size=batch_size)
    953         # Prepare validation data.
    954         do_validation = False

C:\python\anaconda\pgm\lib\site-packages\keras\engine\training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
    675             # to match the value shapes.
    676             if not self.inputs:
--> 677                 self._set_inputs(x)
    678 
    679         if y is not None:

C:\python\anaconda\pgm\lib\site-packages\keras\engine\training.py in _set_inputs(self, inputs, outputs, training)
    587                 assert len(inputs) == 1
    588                 inputs = inputs[0]
--> 589             self.build(input_shape=(None,) + inputs.shape[1:])
    590             return
    591 

C:\python\anaconda\pgm\lib\site-packages\keras\engine\sequential.py in build(self, input_shape)
    219             self.inputs = [x]
    220             for layer in self._layers:
--> 221                 x = layer(x)
    222             self.outputs = [x]
    223             self._build_input_shape = input_shape

C:\python\anaconda\pgm\lib\site-packages\keras\engine\base_layer.py in __call__(self, inputs, **kwargs)
    412                 # Raise exceptions in case the input is not compatible
    413                 # with the input_spec specified in the layer constructor.
--> 414                 self.assert_input_compatibility(inputs)
    415 
    416                 # Collect input shapes to build layer.

C:\python\anaconda\pgm\lib\site-packages\keras\engine\base_layer.py in assert_input_compatibility(self, inputs)
    309                                      self.name + ': expected ndim=' +
    310                                      str(spec.ndim) + ', found ndim=' +
--> 311                                      str(K.ndim(x)))
    312             if spec.max_ndim is not None:
    313                 ndim = K.ndim(x)

ValueError: Input 0 is incompatible with layer conv2d_16: expected ndim=4, found ndim=2
  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 過去に投稿した質問と同じ内容の質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

回答 2

checkベストアンサー

+1

print(x_train.shape[0])などで何の数字なのか見てみると良いと思います。

x_train.shapeでx_trainのデータの形(簡単には、何行×何列のデータなのか)
がわかると思います。

x_train.shape[0]でその1番目の数値を取り出しているので、
x_trainのデータの数ですね。

x_train = x_train.reshape(x_train.shape[0], 28, 28,1)


x_trainを 何個 28×28の大きさ、モノクロ 
の形に変換しますよ、という解釈でよいと思います。

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

  • 2020/07/06 16:09

    わかりやすい解説、どうもありがとうございました。

    キャンセル

0

二次元畳み込みでやるなら、 x_train.reshape(60000, 784)してはいけないのでは。

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

  • 2019/11/07 14:27

    ご連絡ありがとうございます。
    以下のように、2次元?に修正しましたら、なんとかうまく行きました。

    x_train = x_train.reshape(x_train.shape[0], 28, 28,1)
    x_test = x_test.reshape(x_test.shape[0], 28, 28,1)

    このコードについて追加でお教えください。
    shape[0]の[0]は、行数を取得するパラメータかと思いますが、これは、どのような意味があるのでしょうか?後の処理にどのように影響するのでしょうか?

    その[0]に続く、28,28,1 のパラメータ指定だけでは不足するのでしょうか?

    また、28,28,1 は、2次元ではなく3次元になるのでしょうか?

    ご指導をよろしくお願いいたします。

    キャンセル

15分調べてもわからないことは、teratailで質問しよう!

  • ただいまの回答率 89.05%
  • 質問をまとめることで、思考を整理して素早く解決
  • テンプレート機能で、簡単に質問をまとめられる

関連した質問

同じタグがついた質問を見る