質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

sklearnのfit関数でのエラー

yone_yone
yone_yone

総合スコア0

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0評価

0クリップ

37閲覧

投稿2019/11/02 06:10

sklearnのfit関数でのエラーについて質問させていただきます。
現在アンサンブル学習をやりたいと思い、以下のサイトのコードを試しています。
参考HP

エラーが出るコードの箇所と内容は以下になります。

python

# feature importance using random forest from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(n_estimators=80, max_features='auto') rf.fit(X_train, y_train) print('Training done using Random Forest') ranking = np.argsort(-rf.feature_importances_) f, ax = plt.subplots(figsize=(11, 9)) sns.barplot(x=rf.feature_importances_[ranking], y=X_train.columns.values[ranking], orient='h') ax.set_xlabel("feature importance") plt.tight_layout() plt.show() ...

error

--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-17-f9c4d1e292fc> in <module>() 2 from sklearn.ensemble import RandomForestRegressor 3 rf = RandomForestRegressor(n_estimators=80, max_features='auto') ----> 4 rf.fit(X_train, y_train) 5 print('Training done using Random Forest') 6 /usr/local/lib/python2.7/dist-packages/sklearn/ensemble/forest.pyc in fit(self, X, y, sample_weight) 245 """ 246 # Validate or convert input data --> 247 X = check_array(X, accept_sparse="csc", dtype=DTYPE) 248 y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) 249 if sample_weight is not None: /usr/local/lib/python2.7/dist-packages/sklearn/utils/validation.pyc in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) 451 % (array.ndim, estimator_name)) 452 if force_all_finite: --> 453 _assert_all_finite(array) 454 455 shape_repr = _shape_repr(array.shape) /usr/local/lib/python2.7/dist-packages/sklearn/utils/validation.pyc in _assert_all_finite(X) 42 and not np.isfinite(X).all()): 43 raise ValueError("Input contains NaN, infinity" ---> 44 " or a value too large for %r." % X.dtype) 45 46 ValueError: Input contains NaN, infinity or a value too large for dtype('float32').

試したことはX_train.drop(X_train.columns[np.isnan(X_train).any()], axis=1)を入れて`NaN`を削除しようとしましたが、変化なしでした。

分かる方がいましたら、回答いただけると助かります。
※ご回答いただいた内容に質問させていただくこともあるかと思いますので、
※よろしければご返信いただければと思います。

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。