質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
機械語

機械語とは、プロセッサが直接解釈・実行できる状態の言語です。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

機械学習でディープラーニングを実行できない。

Rondon7251
Rondon7251

総合スコア0

機械語

機械語とは、プロセッサが直接解釈・実行できる状態の言語です。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

2回答

0評価

0クリップ

43閲覧

投稿2019/10/25 06:08

編集2022/01/12 10:58

機械学習で次のエラーが出ます。
could not broadcast input array from shape (2,1) into shape (2)

以下コードです

import tensorflow as tf import tensorflow.contrib.keras as keras from sklearn.model_selection import train_test_split import pandas as pd import numpy as np # データの読み込み --- (*1) analysisresults_data = pd.read_csv("analysis_resultstable_BX.csv",encoding="utf-8") # データをラベルと入力データに分離する y = analysisresults_data.loc[:,["Result"]] x = analysisresults_data.loc[:,["Signatures_id","Hit_count"]] # 学習用とテスト用に分割する --- (*2) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, train_size = 0.8, shuffle = True) # モデル構造を定義 --- (*3) Dense = keras.layers.Dense model = keras.models.Sequential() model.add(Dense(10, activation='relu', input_shape=(1,))) model.add(Dense(1, activation='sigmoid')) # ---(*3a) # モデルを構築 --- (*4) model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 学習を実行 --- (*5) model.fit(x_train, y_train, batch_size=20, epochs=300) # モデルを評価 --- (*6) score = model.evaluate(x_test, y_test, verbose=1) print('正解率=', score[1], 'loss=', score[0])

何かわかる方いましたら教えてください。

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

quickquip
quickquip

2019/10/25 06:31 編集

エラーは ValueError: Error when checking input: expected dense_input to have shape (1,) but got array with shape (2,) じゃありませんか?
quickquip
quickquip

2019/10/25 06:45 編集

tensorflowのバージョン ファイルの中身 もないと困るかも
qax
qax

2019/10/25 08:27

エラーの全文を書きましょう。 同じ質問を何度もするのではなく、解決していないならば、同じ質問内でコメントした方が、新しく見た人も経緯が見えて答えやすいと思います。
qax
qax

2019/10/25 08:29

input_shape=(1,) は  input_shape=(2,) でしょう。
Rondon7251
Rondon7251

2019/10/25 08:52

エラー内容追記しましたのでよろしくお願いします。
quickquip
quickquip

2019/10/25 12:43 編集

貼ったコードが間違っているか、編集しているコードと実行しているコードが違っている可能性があります。 あとtensorflowのバージョン。Kerasのバージョンもある方が調べやすそうです。
Rondon7251
Rondon7251

2019/11/04 06:35

以下バージョンです。 tensorflow 1.5.0 Keras 2.1.4

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

機械語

機械語とは、プロセッサが直接解釈・実行できる状態の言語です。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。