質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.51%

  • Python

    11685questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • Jupyter

    416questions

  • Anaconda

    297questions

学習モデルを構築し、epochを回すところで、、、

受付中

回答 0

投稿

  • 評価
  • クリップ 0
  • VIEW 401

今まで学習させる際に正常に動いていたのですが、突然jupyternotebookが開かなくなり、
anacondaをUninstallさせもう一度installさせました。
するとepochを回す際に今まで見たことのない下記のようなエラーが出てしまいました。
installする際にしっかりとinstallができていなかったのでしょうか?

****history=model.fit_generator(train_generator,
                         epochs=200,
                         verbose=1,
                         validation_data=validation_generator,
                         callbacks=[CSVLogger(file_name+'.csv')])****



ValueError                                Traceback (most recent call last)
<ipython-input-40-f664710fb43a> in <module>()
      3                          verbose=1,
      4                          validation_data=validation_generator,
----> 5                          callbacks=[CSVLogger(file_name+'.csv')])

~\Anaconda3\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
     89                 warnings.warn('Update your `' + object_name + '` call to the ' +
     90                               'Keras 2 API: ' + signature, stacklevel=2)
---> 91             return func(*args, **kwargs)
     92         wrapper._original_function = func
     93         return wrapper

~\Anaconda3\lib\site-packages\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
   1416             use_multiprocessing=use_multiprocessing,
   1417             shuffle=shuffle,
-> 1418             initial_epoch=initial_epoch)
   1419 
   1420     @interfaces.legacy_generator_methods_support

~\Anaconda3\lib\site-packages\keras\engine\training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
     53             steps_per_epoch = len(generator)
     54         else:
---> 55             raise ValueError('`steps_per_epoch=None` is only valid for a'
     56                              ' generator based on the '
     57                              '`keras.utils.Sequence`'

ValueError: `steps_per_epoch=None` is only valid for a generator based on the `keras.utils.Sequence` class. Please specify `steps_per_epoch` or use the `keras.utils.Sequence` class.


念のため途中の過程も載せておきます
解決方法があれば教えて下さい。

from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D,Input,Dropout
from keras.applications.vgg16 import VGG16
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD
from keras.callbacks import CSVLogger

n_categories=2
batch_size=32
train_dir='RoadDamageDataset/train'
validation_dir='RoadDamageDataset/validation'
file_name='vgg16_RoadDamageDataset_fine'

base_model=VGG16(weights='imagenet',include_top=False,
                 input_tensor=Input(shape=(224,224,3)))

x=base_model.output
x=GlobalAveragePooling2D()(x)
x=Dense(1024,activation='relu')(x)
x=Dropout(0.5)(x)
prediction=Dense(n_categories,activation='softmax')(x)
model=Model(inputs=base_model.input,outputs=prediction)

for layer in base_model.layers[:15]:
    layer.trainable=False

model.compile(optimizer=SGD(lr=0.0001,momentum=0.9),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

model.summary()

json_string=model.to_json()
open(file_name+'.json','w').write(json_string)

train_datagen=ImageDataGenerator(
    rescale=1.0/255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

validation_datagen=ImageDataGenerator(rescale=1.0/255)

train_generator=train_datagen.flow_from_directory(
    train_dir,
    target_size=(224,224),
    batch_size=batch_size,
    class_mode='categorical',
    shuffle=True
)

validation_generator=validation_datagen.flow_from_directory(
    validation_dir,
    target_size=(224,224),
    batch_size=batch_size,
    class_mode='categorical',
    shuffle=True
)

history=model.fit_generator(train_generator,
                         epochs=200,
                         verbose=1,
                         validation_data=validation_generator,
                         callbacks=[CSVLogger(file_name+'.csv')])
  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

まだ回答がついていません

同じタグがついた質問を見る

  • Python

    11685questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • Jupyter

    416questions

  • Anaconda

    297questions