質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.51%

  • Python

    11753questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • pandas

    895questions

    Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。

pandasでDataFrameの特定の列の値の重複数を入れた新たな列を作成する方法

解決済

回答 1

投稿 編集

  • 評価
  • クリップ 0
  • VIEW 226

trafalbad

score 202

質問の変更申し訳ありません。

psndasで以下のようにpandasのdataFrame(df)があります。

# df
    x    y
# 0  AA  100
# 1  AA  200  
# 2  AA  200  
# 3  BB  100
# 4  BB  200
# 5  CC  300


そして以下のように重複数を求めました。

a = dict()
def b(i):
    if a.has_key(i):
        a[i] += 1
    else:
        a[i] = 1
df["x"].apply(lambda x:b(x))

#In : a
#Out: {'AA': 3, 'BB': 2, 'CC':1}

そこからdfの列xの該当する値に重複数を入れた新たな列(z)の行列(dff)を作りたいのですが、何かいい方法はないでしょうか?
ご教授お願いします。

# dff
    x    y    z
# 0  AA  100  3
# 1  AA  200  3
# 2  AA  200  3
# 3  BB  100  2
# 4  BB  200  2 
# 5  CC  300  1
  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

回答 1

checkベストアンサー

0

重複数のカウントは groupby().transform('count')にて簡単に行うことができます。

import pandas as pd
df = pd.DataFrame({
    'x':['AA','AA','AA','BB','BB','CC'],
    'y':[100,200,200,100,200,300]})

df['z'] = df.groupby('x').transform('count')
print(df)
#    x    y  z
#0  AA  100  3
#1  AA  200  3
#2  AA  200  3
#3  BB  100  2
#4  BB  200  2
#5  CC  300  1

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

同じタグがついた質問を見る

  • Python

    11753questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • pandas

    895questions

    Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。