質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

入力データの読み込みのエラー(Keras)

FALLOT
FALLOT

総合スコア0

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0評価

0クリップ

2066閲覧

投稿2018/06/27 09:39

識別(りんごとオレンジ)https://qiita.com/hiroeorz@github/items/ecb39ed4042ebdc0a957

上記のプログラム参考にしてRGBではなくグレースケールに変換して読み込もうとしました。

しかし、
alueError: Error when checking input: expected dense_1_input to have 2 dimensios, but got array with shape (612, 1, 360000)
というエラーが出ました。
612は訓練データの数・1は1次元配列?・360000は一枚の画像の総ピクセル数だと思われます。

python

image =np.reshape(image, (1,360000))

これを変換してからエラーが出たのこれが原因だと思います。。。
ちなみに、グレースケールの画像の読み込みは出来ていました。

以下にソースを載せているのでおかしい所を教えてください。
宜しくお願い致します。

python

from keras.models import Sequential from keras.layers import Activation, Dense, Dropout from keras.utils.np_utils import to_categorical from keras.optimizers import Adagrad from keras.optimizers import Adam import numpy as np from PIL import Image import os # 学習用のデータを作る. image_list = [] label_list = [] # ./data/train 以下のorange,appleディレクトリ以下の画像を読み込む。 for dir in os.listdir("data/train"): if dir == ".DS_Store": continue dir1 = "data/train/" + dir label = 0 if dir == "a": # appleはラベル0 label = 0 elif dir == "b": # orangeはラベル1 label = 1 for file in os.listdir(dir1): if file != ".DS_Store": # 配列label_listに正解ラベルを追加(りんご:0 オレンジ:1) label_list.append(label) filepath = dir1 + "/" + file # 画像を25x25pixelに変換し、1要素が[R,G,B]3要素を含む配列の25x25の2次元配列として読み込む。 # [R,G,B]はそれぞれが0-255の配列。 image = np.array(Image.open(filepath).resize((600, 600))) print(image.shape) print(filepath) image =np.reshape(image, (1,360000)) print(image.shape) print('\n') # 出来上がった配列をimage_listに追加。 image_list.append(image / 255.) # kerasに渡すためにnumpy配列に変換。 image_list = np.array(image_list) # ラベルの配列を1と0からなるラベル配列に変更 # 0 -> [1,0], 1 -> [0,1] という感じ。 Y = to_categorical(label_list) # モデルを生成してニューラルネットを構築 model = Sequential() model.add(Dense(32, input_dim=360000)) model.add(Activation("relu")) model.add(Dropout(0.8)) model.add(Dense(1500)) model.add(Activation("relu")) model.add(Dropout(0.8)) model.add(Dense(1000)) model.add(Activation("relu")) model.add(Dropout(0.8)) model.add(Dense(500)) model.add(Activation("relu")) model.add(Dropout(0.8)) model.add(Dense(2)) model.add(Activation("softmax")) # オプティマイザにAdamを使用 opt = Adam(lr=0.001) # モデルをコンパイル model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) # 学習を実行。10%はテストに使用。 model.fit(image_list, Y, nb_epoch=100, batch_size=100, validation_split=0.1) # テスト用ディレクトリ(./data/train/)の画像でチェック。正解率を表示する。 total = 0. ok_count = 0. for dir in os.listdir("data/train"): if dir == ".DS_Store": continue dir1 = "data/test/" + dir label = 0 if dir == "a": label = 0 elif dir == "b": label = 1 for file in os.listdir(dir1): if file != ".DS_Store": label_list.append(label) filepath = dir1 + "/" + file image = np.array(Image.open(filepath).resize((600, 600))) print(filepath) #image = image.transpose(2, 0, 1) #image = image.reshape(1, image.shape[0] * image.shape[1] * image.shape[2]).astype("float32")[0] #iamge = image.reshape(1,360000).astype("float32")[0] image =np.reshape(image, (1,360000)) result = model.predict_classes(np.array([image / 255.])) print("label:", label, "result:", result[0]) total += 1. if label == result[0]: ok_count += 1. print("seikai: ", ok_count / total * 100, "%")

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。