質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.75%

  • Python 3.x

    5283questions

    Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

  • TensorFlow

    599questions

  • 深層学習

    133questions

Tensorflowでラベルを返す際任意の文字で返す方法

受付中

回答 1

投稿

  • 評価
  • クリップ 1
  • VIEW 204

TyoNgc

score 8

Tensorflowを用いて画像分類を行っているものです。学習した後に実際に分類ができているか見分けるプログラムは多くのサイトにあるように下記のようなプログラムで実行できると思いますが、ラベルを返す際に任意の文字で返したいと思っています。(1:りんご、2:みかん)のようにしたいと思っています。どのように実行するのが一番効率的かアイデアをください。Python組み込みのWebアプリを作るのは難しいでしょうか?

import sys
import numpy as np
import tensorflow as tf
import cv2

NUM_CLASSES = 7
IMAGE_SIZE = 28
IMAGE_PIXELS = IMAGE_SIZE*IMAGE_SIZE*3

def inference(images_placeholder, keep_prob):

    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)

    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)

    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')

    x_image = tf.reshape(images_placeholder, [-1, 28, 28, 3])

    with tf.name_scope('conv1') as scope:
        W_conv1 = weight_variable([5, 5, 3, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

    with tf.name_scope('pool1') as scope:
        h_pool1 = max_pool_2x2(h_conv1)

    with tf.name_scope('conv2') as scope:
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

    with tf.name_scope('pool2') as scope:
        h_pool2 = max_pool_2x2(h_conv2)

    with tf.name_scope('fc1') as scope:
        W_fc1 = weight_variable([7*7*64, 1024])
        b_fc1 = bias_variable([1024])
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    with tf.name_scope('fc2') as scope:
        W_fc2 = weight_variable([1024, NUM_CLASSES])
        b_fc2 = bias_variable([NUM_CLASSES])

    with tf.name_scope('softmax') as scope:
        y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

    return y_conv

if __name__ == '__main__':
    test_image = []
    for i in range(1, len(sys.argv)):
        img = cv2.imread(sys.argv[i])
        img = cv2.resize(img, (28, 28))
        test_image.append(img.flatten().astype(np.float32)/255.0)
    test_image = np.asarray(test_image)

    images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS))
    labels_placeholder = tf.placeholder("float", shape=(None, NUM_CLASSES))
    keep_prob = tf.placeholder("float")

    logits = inference(images_placeholder, keep_prob)
    sess = tf.InteractiveSession()
    saver = tf.train.Saver()
    sess.run(tf.initialize_all_variables())
    saver.restore(sess, "./model.ckpt")

    for i in range(len(test_image)):
        accr = logits.eval(feed_dict={ 
            images_placeholder: [test_image[i]],
            keep_prob: 1.0 })[0]
        pred = np.argmax(logits.eval(feed_dict={ 
            images_placeholder: [test_image[i]],
            keep_prob: 1.0 })[0])
        print (pred,accr)
  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

質問への追記・修正、ベストアンサー選択の依頼

  • wakame

    2018/01/16 20:12

    タイトルの「Tensorflowでラベルを返す際任意の文字で返す方法」と質問文の「Python組み込みのWebアプリを作るのは難しいでしょうか?」は何か関係があるのですか。

    キャンセル

回答 1

0

辞書で実装するのが一番素直ですが、numpy.arrayで実装すると一番行数少なく済みます。
内包表記使えばいずれも1行ですみますが。

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

15分調べてもわからないことは、teratailで質問しよう!

  • ただいまの回答率 90.75%
  • 質問をまとめることで、思考を整理して素早く解決
  • テンプレート機能で、簡単に質問をまとめられる

関連した質問

同じタグがついた質問を見る

  • Python 3.x

    5283questions

    Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

  • TensorFlow

    599questions

  • 深層学習

    133questions